
Performance Tuning
Performance Tuning

withwith

LINUX inside
LINUX inside

Copyright

© 2001 Adam Tauno Williams (awilliam@whitemice.org)

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free
Software Foundation with no Invariant Sections, no Front � Cover
Texts, and no Back � Cover Texts. You may obtain a copy of the
GNU Free Documentation License from the Free Software
Foundation by visiting their Web site or by writing to: Free
Software Foundation, Inc., 59 Temple Place � Suite 330, Boston,
MA 02111 � 1307, USA.

2.2

2.4
Early

2.4

Key

This indicates that the parameter(s) discussed on
the slide is appropriate only to the 2.2.x series of
kernel (Redhat Linux 7.0 and prior)

This indicates that the parameter(s) discussed on
the slide is appropriate only to early 2.4.x series
kernels (Redhat Linux 7.1 and 7.2). Some 2.4.x kernel
parameters changed around the time of the 2.4.9
release.

This indicates that the parameter(s) discussed on
the slide is appropriate only to the 2.4.x series of
kernels (Redhat Linux 7.1 and 7.2).

Basic
Concepts

Numbers are meaningless

A number standing by itself with no unit (second, mile, packets, light year) or
standing without relation to another number has no meaning.

For meaningful performance tuning, you must measure performance in a
consistent fashion over a long period of time, both before and after
adjustments. These measurements will stand in relation to each other.

OEM benchmarks and performance claims are as meaningless as “14
dentists prefer Crest toothpaste” . A chip vendor'sclaim that their test indicates
their CPU is 13% faster than the competitor'sCPU is meaningless unless their
instruction sequence is nearly identical to the one generated by your applications.

Balance

A single constraint or poorly performing component can throttle the
throughput of an entire host, or even network.

Adjusting network, virtual machine, or hardware parameters always needs to
be done with consideration for all other subsystems.

An overloaded CPU may take so long to respond to requests that packets are lost,
causing network retransmissions, causing more collisions, causing higher latency,
andso on, and so on....

A machine heavy into its swap space can leave it's blisteringly fast superscalar four
processors with nothing to do.

Poorly adjusted network settings can cause a host connected to a high speed WAN
to spend more time waiting for packet acknowledgements from remotes than actually
processing requests or processing data.

Basic
Technical
Concepts

System Calls

The UNIX/Linux model (and most other modern operating systems) divides
program operations into two basic groups: calls to procedures found in user
space (programs, libraries, etc...) and calls to procedures found in kernel
space (hardware operations, etc...). The later are referred to as system calls.

An application (particularly an I/O or network intensive one) can often
spend more of its time making system calls, then it spends processing data
itself.

Making system calls has a penalty. Data must be copied in an out of kernel
space. It behoves the developer to move as much data as possible at once.

The strace command can be used to report the system calls made by a
process, as well as, a summary of how many times a particular system call
was made, and how much time was spent there.

A strace summary

~ $ strace � c nslookup www.kalamazoolinux.org
Non � authoritative answer:
Name: www.kalamazoolinux.org
Address: 63.148.122.250

% time seconds usecs/call calls errors syscall
��������������� ��������������������� ��������������������� ����������������� ����������������� �������������������������������

37.29 0.010970 522 21 read
14.07 0.004140 159 26 5 open
10.60 0.003118 62 50 old_mmap
5.48 0.001612 230 7 7 rt_sigsuspend
4.09 0.001203 50 24 close
3.50 0.001031 49 21 fstat64
3.48 0.001025 54 19 mprotect

Context Switch

UNIX/Linux is a family of multi � tasking operating systems. The process of
suspending one running process and commencing the execution of another
process is referred to as a context switch.

Context switches are computationally expensive. The kernel must perform
several operations in preperation for running a process other than the one
currently executing, including saving and restoring the CPU registers,
modifying the address translation table in the MMU, updating the schedular
information, etc...

Simply running “ too many” processes will harm performance.

On SMP systems, context switches are exceptionally painful if a process is
switched from one processor to another, as the advantage of the processors
fast cache is negated.

Interrupts

An interrupt is a hardware event (mouse movement) or software event
(timer) that forces the system to context switch to a given process or point
in the kernel.

When a system is processing a hardware interrupt, it is not doing “work” .
This, plus the cost of the context switch involved, can impede performance.

The vmstat in (interrupt) and cs (context switch) columns can be used to
monitor how much of this activity is taking place.
~ $ vmstat 1

procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
0 1 0 78652 2712 4356 161712 1 1 12 4 206 151 5 3 92
0 1 0 78652 2712 4356 161712 0 0 0 0 125 346 1 1 98
0 1 0 78652 2712 4356 161712 0 0 0 0 138 346 1 0 98
0 1 0 78652 2712 4356 161712 0 0 0 0 130 376 1 2 97
0 1 0 78652 2712 4356 161712 0 0 0 0 132 328 2 1 97

PATH and LD_LIBRARY_PATH

The PATH environment variable determines which directories are searched
when an executable is requested, and in what order those directories are
searched. A lengthy PATH will make this search longer, especially on
filesystems (such as ext2) where searches of large directories (such as
/usr/bin, /usr/X11R6/bin, and possibly /usr/local/bin) are inherently slow.

The LD_LIBRARY_PATH environment determines which directories are
searched when a shared library is requested and in what order before the
system library cache is searched. The same performance penalities that
apply to PATH apply to LD_LIBRARY_PATH except that for every
executable requested, a dozen or more shared libraries may be loaded.

The LD_LIBRARY_PATH can however be used to improve performance
if you know before hand where the executables libraries will be found,
thus avoiding having to search the system library cache.

'memory squeeze'

A “memory squeeze” condition occurs when the kernel (most likely a
device driver) is unable to allocate any physical RAM pages. This will
very often crash at least the device driver itself, and quite possibly the
entire system.

The most common device to generate a “memory squeeze” is a high speed
network interface card. Particularly when it receives many small packets.

Device drivers need to acquire physical RAM pages, not virtual memory.
Thus, it is better to swap and avoid consuming all the physical RAM, than
to simply avoid swapping.

There are several parameters mentioned in this presentation in regards to
avoiding “memory squeeze” conditions.

Benchmark
Tools

hdbench
http://freshmeat.net/projects/hdbenchclone/

hdbench is a GTK/UN*X port of the once popular winbench tool for
providing a very basic measurement of a desktop machine'sperformance.

Parts of hdbench are
written in assembly
laguage to avoid compiler
ideosyncracies. For this
reason, it will only work on
Intel based systems.

Disk I/O and graphical
benchmarks are rather
primitive, but better than
nothing.

bonnie++
http://www.coker.com.au/bonnie++/

bonnie++ is the defacto standard for measuring I/O throughput. As you can
see from the above example, it gives a rather detailed synposis of
performance.

Use the “ 	 b” option when testing performance on database and mail servers.
This causes a fsync() after each I/O operation which is typical for such
services. Otherwise, write
 back caching is permitted.

NetBench

NetBench is the commercial benchmark used to measure the performance of
a fileserver for Microsoft Windows' clients.

Running NetBench requires a very expensive lab configuration and a great
deal of Windows specific knowledge.

The Samba team has developed a set of tools for measuring the performance
of a Samba filesystem that emulates the NetBench tests/.

dbench & tbench
ftp://ftp.samba.org/pub/tridge/dbench/

dbench performs all the disk I/O operations that a Samba server would
perform during a NetBench run.

tbench performs all the TCP network calls that a client would make to a
Samba server during a NetBench run.

Both dbench and tbench can simulate the load of a given number of clients.
(Assuming that you're running the test froma workstation that is powerful enough
and has a fast enough network connection.)

~/dbench $./dbench � c client.txt 4
4 clients started
Throughput 17.2396 MB/sec (NB=21.5495 MB/sec 172.396 MBit/sec) 4 procs

~/dbench $./tbench_srv &
~/dbench $./tbench 4 localhost
^.^.^.^.4 clients started
Throughput 24.9053 MB/sec (NB=31.1317 MB/sec 249.053 MBit/sec) 4 procs

smbtorture
ftp://ftp.samba.org/pub/tridge/dbench/

smbtorture is a Samba server benchmarking tool and stress tester. It
requires the client.txt file from the dbench and tbench packages.

The administrator should create a seperate share on the Samba server for
the smbtorture program to use. It will require roughly 25Mb of disk
space per simulated client.

~ $ smbtorture //sardine/torture � Uuser%passwd 32 NBW95
Throughput 2.67016 MB/sec (NB=3.33771 MB/sec 26.7016 MBit/sec)
NBW95 took 49.4353 secs
~ $ smbtorture //sardine/torture � Uuser%passwd 32 NBWNT
Throughput 2.4795 MB/sec (NB=3.09937 MB/sec 24.795 MBit/sec)
NBWNT took 53.2369 secs

pchar
http://www.employees.org/~bmah/Software/pchar/

1: 192.168.1.19 (brouter3.morrison.iserv.net)
Partial loss: 0 / 1472 (0%)
Partial char: rtt = 9.666541 ms, (b = 0.038325 ms/B), r2 = 0.999985

stddev rtt = 0.018111, stddev b = 0.000022
Partial queueing: avg = 0.000476 ms (588 bytes)
Hop char: rtt = 8.157720 ms, bw = 210.211991 Kbps
Hop queueing: avg = 0.000321 ms (8 bytes)

2: 192.168.121.2 (wycgate
 WAN0.morrison.iserv.net)
Partial loss: 736 / 1472 (50%)
Partial char: rtt = 12.229483 ms, (b = 0.039295 ms/B), r2 = 0.999824

stddev rtt = 0.085249, stddev b = 0.000114
Partial queueing: avg = 0.001103 ms (1234 bytes)
Hop char: rtt = 2.562942 ms, bw = 8243.287278 Kbps
Hop queueing: avg = 0.000627 ms (646 bytes)

3: 192.168.21.1 (wycttysrvr.morrison.iserv.net)
Path length: 3 hops
Path char: rtt = 12.229483 ms r2 = 0.999824
Path bottleneck: 210.211991 Kbps
Path pipe: 321 bytes
Path queueing: average = 0.001103 ms (1234 bytes)
Start time: Wed Jan 30 01:58:06 2002
End time: Wed Jan 30 02:51:33 2002

The pchar utility
measures the end � to �

end characteristics of a
network path.

To the left is an
example of pchar
running against a host
on a remote network
connected to the host
network with a frame
relay circuit (256kb port
speed, CIR of 128Kb).

powertweak � gtk
http://powertweak.sourceforge.net/

powertweak is a daemon and GTK GUI for adusting system parameters,
including the ones discussed in this presentation and more.

powertweak also
contains a database
of PCI devices and
releventant tweaks
that can be applied
to improve
performance.

powertweak is one
of the most thorough
hardware browsers
available.

I/O, I/O, it's
off to work

we go....

I/O Tuning

I/O is the ability to move data between a device and system memory.
Performance tuning of the I/O subsystems usually focuses on maximizing
the throughput of fixed disks, as they account for the preponderance of
I/O in a system.

Most computers designed for “personal” use have flakey and poorly
designed I/O subsystems. Up until vary recently, most desktop operating
systems did not support multithreaded I/O and other advanced I/O
techniques, which allowed manufactures to get away with simply
strapping in an even more over � powered CPU.

If you work with large files, multiple applications, or swap frequently,
tuning your I/O subsystems can result in a very significant performance
increase.

IDE

IDE consumes a fair amount of the host CPU capacity to perform its tasks.
The best course of action for systems dependent on IDE is to minimize disk
activity. IDE has poor to no multitasking capability. Avoid attaching more
than one device to an IDE bus, as only one drive can be active at a time.

Newer IDE drives and controllers can be significantly faster than older units.
Avoid connecting older drives to the same bus as newer drives. The bus will
operate at the speed of the slowest device.

Different IDE controller chipsets vary greatly in performance.

Many (most?) IDE drives report success for writes once the data reaches the
drive'sbuffer, but before it is written to disk. This happens even if you tell the
drive not to buffer writes. Do not store critical information on an IDE drive,
or at least, let the system be idle for several seconds after shutdown before
powering off.

hdparm

The hdparm command is used to display or adjust the features enabled for
communication with a fixed disk or fixed disk controller.
/dev/hda:

multcount = 16 (on)
I/O support = 1 (32 � bit)
unmaskirq = 0 (off)
using_dma = 1 (on)
keepsettings = 0 (off)
nowerr = 0 (off)
readonly = 0 (off)
readahead = 8 (on)
geometry = 524/255/63, sectors = 8421840, start = 0

Enabling features not supported by your drive can result in system
lockups, poor performance, and/or corrupted filesystems.

Correct adjustment of the feature set can result in a huge increase in
system performance and responsiveness.

/etc/sysconfig/harddisks

On a RedHat system the file /etc/sysconfig/harddisks is parsed by the
startup scripts for the purpose of “permanently” adjusting drive/interface
paramemeters.

USE_DMA=1 (hdparam � d1)
Enables DMA transfer to/from the controller.

MULTIPLE_IO=16 (hdparm � m16)
By default, the IDE driver transfers one block of data per interrupt. This
enables the driver to transfer 16 (or some other number) blocks per
interrupt, which greatly reduces the overhead invloved in reading from
the disks (10 � 50%).

EIDE_32BIT=1 (hdparm � c1)
Enables 32 transfers between main memory and a PCI or VLB IDE
interface.

/etc/sysconfig/harddisks
LOOKAHEAD=1 (hdparm � A1)
This enables a drive's read � ahead feature, which causes the drive to read the
next 8 sectors after a read request, in anticipation that these blocks will be
subsequently requested. The number of blocks read ahead can be adjusted
with hdparm � a#.

EXTRA_PARAMS=
This option is used to pass additional parameters to hdparam.
Other hdparam flags of intrest:

� u{0|1} Allows the system to unmask other interrupts during
drive operations. This can result in a significant
boost in responsiveness and the performance of other
devices, particularly serial port modems. However,
some IDE interfaces are not capable of operating
unmasked.
� X34 Enable multi � word DMA mode 2.
� X66 Enable UltraDMA mode (burst).

SCSI

SCSI is a significantly more “advanced” I/O technology than IDE,
and thus is frought with additional complexities. SCSI does,
however, offer superior performance for multitasking environments
and heavy I/O loads in addition to greater expandability (more
devices per bus).

Various SCSI adapters implement different sets of features and differ
greatly in how they perform. Be sure to check if your SCSI card has
a corresponding README in /usr/src/linux/drivers/scsi.

SCSI: TCQ

Enable “Tagged Command Queueing” if your card supports it. TCQ can
increase disk performance under heavy loads by 15 � 20%.

For the Adaptec 7xxx drivers TCQ needs to be enabled via LILO:
append="aic7xxx=tag_info:{{0,0,0,0,0,0,0}}"

The maximum queue size for Adaptec controllers is set at compile time
(default 8). The queue size can be increased to 32.

Tape Block Size
Most tape devices under Linux default to a block size of 0, which indicates
“variable” block size. Setting your tape devices to a fixed block size will often
improve backup and restore performance.

/home/awilliam $ mt � f /dev/st0 status
SCSI 1 tape drive:
File number=0, block number=0.
Tape block size 0 bytes. Density code 0x0 (default).
Soft error count since last status=0
General status bits on (41010000):
BOT ONLINE IM_REP_EN
/home/awilliam $ mt � f /dev/st0 setblk 4096
/home/awilliam $ mt � f /dev/st0 status
SCSI 1 tape drive:
File number=0, block number=0.
Tape block size 4096 bytes. Density code 0x0 (default).
Soft error count since last status=0
General status bits on (41010000):
BOT ONLINE IM_REP_EN

Use the � b (Nx512 bytes) option of the tar command to match the block size of
your backups to the block size of the tape drive.

tar � b8 � cvf /dev/st0 /home

The
File �

system

Swap Striping

The default behavior for the allocation of swap space is that the first
activiated swap partition is consumed first, then the second, etc...
This places the greatest write load (at least for paging/swapping) upon
the drive containing the first swap partition, and subsequent swap
partitions may never be used.

Using the pri={int} option in /etc/fstab with swap partitions you can
control how the kernel chooses to allocate swap space. If swap
partitions have an equal priority, the kernel will allocate swap from
the partitions in a round � robin fashion, balancing out the I/O load.

Higher priority swap partitions are consumed before lower priority
swap partitions are used.

Swap priority is a value between 0 and 32,767.

The Elevator

The elevator is the kernel mechanism for scheduling I/O operations out to the
hardware. The elevator frequently makes non � optimal choices about the order
in which I/O operations are presented to hardware.

For example:
1. A disk has three partitions: blocks 1 � 1000, 1001 � 5000, and 5001 – 10000.
2. A process writes to a file found on block 500; another process writes to a file
on block 5002; and then the first process writes to its file again, at block 501.
3. These I/O operations may be presented to the drive as writes to blocks 500,
5002, 501. Resulting in excessive head movement, and thus additional latency.

It is best to spread filesystems that receive a significant amount of writes
(/home, /var, /tmp, swap) on different drives where possible.

If more than one of these partitions will be on a single drive, attempt to make
them adjacent and near the center/start of the drive (which has better seek
times).

File Handles

The ability of a process to access a file depends upon its ability to allocate a
file handle to represent the file.

~ $ sysctl fs.file nr
fs.file nr = 5398 962 16384
Value #1 – The number of allocated file handles
Value #2 – The number of used file handles
Value #3 – The maximum number of file handles the kernel will allocate

You can raise the file handle limit with sysctl ! w fs.file ! max=32767

Ideally, the first number should approach the maximum number with the
center number far behind. Raise the limit until this occurs.

A system needs to be up for a reasonable period of time before you should
measure against these values.

The i " node table

Files, directories, pipes (including: standard in, standard out, standard error)
and sockets are representing in the kernel as i # nodes.

~ $ sysctl fs.inode $ state
fs.inode $ state = 1609 46 0 0 0 0 0
Value #1 – The number of i $ nodes to system has allocated
Value #2 – The number of free i $ nodes (?)
Value #3 – Non $ zero when the system needs to prune the i $ node table
Values #4 through #7 are dummy values

The maximum number of i % nodes that the kernel will allocate into the i % node
table is stored in /proc/sys/fs/inode % max, and this limit can be raised by
echo % ing a value into this file %

~ # echo “32767” > /proc/sys/fs/inode & max

The general rule of thumb is that this table should be three times the size of
the maximum number of allocated file handles.

2.2

Block Size

The block size of a filesystem defines the granularity of disk space
allocation and can significantly effect its performance, particularly if
it is part of a logical or RAID volume.

Large block sizes use space less efficiently but minimize file
fragmentation while smaller block sizes use space more efficiently but
increase the probability of filesystem fragmentation.

Filesystems are created with the mkfs command whose ' b option
determines the block size. Most filesystems on Linux support 1024,
2048, or 4096 byte blocks.

noatime

Most UNIX filesystems (including ext2) record three time stamps for
every file: creation, modification, and access.

The maintainance of the access time stamp requires an I/O operation to
be performed to update the files meta (data every time an operation is
performed on the file. This can dramatically increase I/O load on a
busy filesystem.

The noatime mount option disables maintaince of the access time
stamp on files in the filesystem.

ext2
Ext2 is (at least until recently) the default and standard Linux filesystem.

Ext2 filesystems begin to slow down after they reach about 1/3 their capacity.

Ext2 filesystems perform poorly when directories contain many (hundreds or
thousands) of entries. It is better to have deep directory structures with fewer
files in each directory.

Ext2 and RAID

ext2 filesystems on a RAID 4 or 5 volume can be optimized at creation
by using the mkfs's “) R stride=###” option. This option allows you to
inform mkfs of how many contiguous filesystem blocks will be
contained in each volume chunk*.

For example: If your RAID device has a 32k chunk size, and your filesystem has 4k
blocks, you would be best to set stride=8. (mkfs * b 4096 * R stride=8 /dev/md3)

*A chunk is the atomic unit for read/write operations performed on a RAID volume.

For RAID levels other than 4 or 5, the performance effect of the stride
option is not documented. It is probably a good idea to use it anyway.

XFS
The XFS filesystem is a high + performance journalized filesystem available
on some Linux distributions. XFS was donated to the Open Source
community by Silicon Graphics, which used it as the default filesystem
for their proprietary UNIX version, IRIX.

XFS is generally faster than ext2 for large filesystems in addition to being
more robust due to its journaling technology.

XFS on Linux supports only 4096 byte blocks. XFS on IRIX supports
blocks as large as 64k.

By default, two log buffers are allocated per mounted XFS filesystem.
This can be adjusted to any value between two and eight at mount time via
the logbufs= mount option. More logbufs may result in increased
performance at the expense of RAM consumption

XFS

The default journal for an XFS filesystem is internal. That is, it resides
on the same partition, or logical volume, as the data. For filesystems
with a heavy write load, it is advantageous to move the journal to a
partition or logical volume located on a separate (and less utilized) disk
or physical volume ,

mkfs - t xfs - l logdev=/dev/mirror1/journal1,size=50000b /dev/mirror0/home

The above would create an XFS filesystem on /dev/mirror0/home, and
place the journal on /dev/mirror1/journal1. The journal size is specified
to be 50,000 blocks (4,096 * 50,000 = 204,800,000 bytes).

Name
Service
Switch

What is NSS?

NSS (Name Service Switch) provides the system with a common method
of acquiring user, group, and host name information.
#ls . l
/ rw / r /�/ r /�/ 1 awilliam users 2137 Oct 5 05:35 wds_typer.class
/ rw / r /�/ r /�/ 1 awilliam users 3900 Jul 19 21:48 webclasses.dia~
drwxr / xr / x 12 awilliam users 4096 Sep 28 06:29 work

This information comes
to you via NSS

The default NSS module (libnss_files) searches /etc/passwd, /etc/group, and
/etc/hosts for the approriate information.

As your passwd file, or other files grow, the constant need to parse these text
files can begin to degrade system performance.

NSS performance effects the performance of the entire system.

nscd
(The Performance Clue Stick)

The nscd cache daemon creates a cache of NSS information. Calls by an
application to the NSS API will first check with NSCD to see if it already has
the information before querying the NSS modules.

The "nscd –statistic" command will display how effectively the NSS cache is
performing 0

passwd cache:
yes cache is enabled
211 suggested size
600 seconds time to live for positive entries
20 seconds time to live for negative entries
1 cache hits on positive entries
0 cache hits on negative entries
3 cache misses on positive entries
0 cache misses on negative entries
25% cache hit rate
yes check /etc/passwd for changes

nscd.conf

The nscd daemon'sconfiguration is /etc/nscd.conf

enable 1 cache passwd yes
positive 1 time 1 to 1 live passwd 600
negative 1 time 1 to 1 live passwd 20
suggested 1 size passwd 211
check 1 files passwd yes

This lets you tune the size of the cache (in case you have a large
user database), how long entries live in the cache, etc...

The cache size must be a prime number.

Network
Devices

modinfo

Most distributions provide the network interface drivers as modules that
are loaded at boot time. Each module has a set of options it supports in
order to customize or tune its performance. The options of a module can
be interrogated with the modinfo command.

~ $ /sbin/modinfo 2 p tulip
tulip_debug int
max_interrupt_work int
rx_copybreak int
csr0 int
options int array (min = 1, max = 8)
full_duplex int array (min = 1, max = 8)

If you do not believe your network
interface is operating at full duplex
(assuming it should), you can force
full duplex mode with the
full_duplex=1 option when the
module is loaded.

rx_copybreak

When an ethernet interface is initialized, the driver typically sets up buffer
space for 32 packets. (Each buffer is 1536 bytes.) This insures the driver has
somewhere to put incoming packets.

In order to conserve this buffer, the interface driver attempts to allocate an
additional buffer outside this pool for any packer smaller than the size specified
in the rx_copybreak parameter (default is 200 bytes).

~$ modprobe tulip rx_copybreak=400
Systems with high memory pressure may be unable to allocate memory for the
out 3 of 3 buffer buffer if many small packets arrive at the system in short order.
This can result in a “memory squeeze” condition, crashing the module and
potentially the entire system. If “memory squeeze” occurs, it is better to
resolve the issue via vm.freepages (a virtual machine parameter), if possible.

It may be worth while to adjust this parameter for performance reasons on very
slow or low memory systems, to avoid performing memory copies.

The
Network

(TCP, UDP, IP)

TCP Connection Setup

Poodle

PitBull

SYN, Dest. Port: 80 Src. Port: 9999

SYNACK, Dest. Port: 9999 Src. Port: 80

ACK, Dest. Port: 80 Src. Port: 9999

The three 4 step connection process must complete before any
application data is transferred.

The sequence field is assigned an arbitrary value when the
connection is established. The sequence is a 32 bit value.

TCP Retries

The number of attempts to establish a TCP connection is controlled by the
net.ipv4.tcp_syn_retries parameter, which has a default value of 5 (in most
cases) and a maximum value of 255. On networks with high rates of packet
loss, you may want to increase this number.

net.ipv4.tpc_max_syn_backlog controlls the number of connection attempts
that can be queued (recieved, but not yet acknowledged). If a low 5 memory
server (<128Mb) recieves bursts of traffic, increasing this value may assist
clients' ability to connect. The maximum value is 1024, which is the
default for systems with greater than 128Mb of physical memory.

During a connection, TCP will retransmit unacknowledged packets. The
maximum number of retransmissions before the host decides that the
connection is dead is controlled via the net.ipv4.tcp_retries2 parameter.
Lowering this value allows systems to give up sooner on dead or slow
connections/clients.

TCP Keepalive

net.ipv4.tcp_keepalive_time = 7200
How often Linux sends out keepalive probes for idle sockets where
keepalive is enabled (7200 seconds / 60 seconds per minute) = 120 minutes

net.ipv4.tcp_keepalive_probes = 9
How many keepalive probes to be sent before assuming the connection
is dead

net.ipv4.tcp_keepalive_intvl = 75
How long to wait, in seconds, between each of the aforementioned
keepalive probes

Allowing idle connections to be truncated sooner, or detecting dead
connections faster, can enable a server, which maintains long duration
connections (SMB file server), to support more clients.

The Window

Poodle

PitBull

Data Packet, Sequence 1

Data Packet, Sequence 2

Data Packet, Sequence 3

ACK, Sequence 4

TCP maintains a Window which determines how much data can be on the
wire before an ACK from the destination is required. A higher window
permits faster more efficient data transfer, but makes error recovery more
expensive.

The theoretical optimum TCP Window =
Bandwidth (B/sec) * RTT (seconds)

The maximum window size is determined by the size of the TCP buffers on each
host (which should be roughly twice the size of the maximum desired window).

TCP Window EffectsOn a low 6 latency LAN, the TCP window rarely has much of an effect on
performance (except introducing lots of unneccesary ACK packets).

Having a restricted TCP Window on a network containing high 6 speed WAN
links will stangle network performance. Here is why....

OC 6 3 (155Mbps), RTT=50ms

Optimal Window Size
(.05s/2) * (155,000,000 / 8) = 484,375

Maximum Throughput With
A Given Window
% = (window in KB)

(Mb / 8) * (RTT / 2)

Input Queue
(Protocols other than TCP)

The default kernel buffer size for incoming network socket operations is
64k. For a busy server, particulary for NFS, this can be quite a constraint.

For example: With a 64k input queue, nfsd's default 8 instances leaves 8k of
buffer for each NFS thread.

To set the input queue size to an alternate value (256k/4Mb for example):
/sbin/sysctl 7 w net.core.rmem_default=262144
/sbin/sysctl 7 w net.core.rmem_max=4194304

All sockets opened after this adjustment will receive (from the kernel) an
input queue of the specified size.

You must restart any running services to receive the effect of this change.

Output Queue

The default kernel buffer size for outbound network socket operations is 64k.

The output queue size has the same basic performance impact as the input
queue.

To set the output queue size to an alternate value (256k/4Mb for example):
/sbin/sysctl 8 w net.core.wmem_default=262144
/sbin/sysctl 8 w net.core.wmem_max=4194304

All sockets opened after this adjustment will receive (from the kernel) an
output queue of the specified size.

You must restart any running services to receive the effect of this change.

Output Buffer Stuffing

Having large output buffers can increase throughput in the following
“common” situation:

1. A client queries a server for a large result set.
2. The client drops off or does not listen for the result.
3. Server attempts to send result to the client, and can only queue X number
of bytes of the large result set before waiting for the queue to emtpy. Because
the client is not listening, connection attempts are retried and the queue takes
an excessive amount of time to empty. Other clients' requests and results are
tied up while the server thrashes about attempting to service the dead client.

By making the output buffer large enough to hold any reasonably sized result set, the
server can “ transmit” the data and return to normal operation, leaving the kernel to
deal with most of the difficulty presented by the dead client.

This is particularly useful for services, such as LDAP, that tend to receive numerous
queries whose results may vary greatly in size and where responsiveness is
imperitive.

The size of the TCP input and output queus can be controlled somewhat
independently of other protocols via two sysctl values:

net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072

Value #1 – Minimum buffer guaranteed to each TCP socket
Value #2 – The default buffer size for each TCP socket*
Value #3 – The maximum buffer size for each TCP socket**
*This value overrides net.core.rmem_default or net.core.wmem_default respectively.
**This value cannot be greater than net.core.rmem_max or net.core.wmem_max respectively.

The values can be modified with the sysctl command 9

~ $ /sbin/sysctl 9 w net.ipv4.tcp_rmem=”65535 131072 4194304”
net.ipv4.tcp_rmem = 65535 131072 4194304
~ $ /sbin/sysctl 9 w net.ipv4.tcp_wmem=”65535 131072 194304”
net.ipv4.tcp_wmem = 65535 131072 4194304

2.4

TCP Input & Output Queues

TCP Overall Memory Consumption

The overall memory consumption of the TCP stack is controlled by the sysctl
variable net.ipv4.tcp_mem

~ $ /sbin/sysctl net.ipv4.tcp_mem
net.ipv4.tcp_mem = 7168 7680 8192

Value #1 – The number of pages gauranteed to the TCP stack
Value #2 – Once the TCP stack has consumed this number of pages, it attempts to moderate

its consumption until the number of pages consumed falls below value #1.
Value #3 – The maximum number of pages the TCP is permitted to consume

Pages on the Intel architecture are 4k.

Values can be adjusted with the sysctl command :

~ $ /sbin/sysctl : w net.ipv4.tcp_mem=”8192 9216 10150”
net.ipv4.tcp_mem = 8192 9126 10150

2.4

TCP Options
Do not disable these features on an Internet server.

TCP is a complicated protocol with many features. Several of these features
were implemented to improve performance on modern high ; latency high ;

throughput WANs. These options increase the CPU resources consumed in
processing the TCP stack. If your host communicates only with LAN
connected clients, you may be able to gain a small performance increase by
disabling these features.

~ $ /sbin/sysctl < w net.ipv4.tcp_sack=0
net.ipv4.tcp_sack = 0
~ $ /sbin/sysctl < w net.ipv4.tcp_timestamps=0
net.ipv4.tcp_timestamps = 0

Do NOT disable the following if you communicate with any other hosts via a
WAN, and be sure to set your buffers to some value between 128kb and
256kb.

~ $ /sbin/sysctl < w net.ipv4.tcp_window_scaling=0
net.ipv4.tcp_window_scaling = 0

Port Oriented Communication
(TCP & UDP)

192.168.1.10:TCP/6452

192.168.1.11:TCP/13452

192.168.1.11:TCP/9999

192.168.1.12:TCP/23

Telperion

Laurelin

Yavanna

The combination of IP
address, protocol, and port
create a unique identifier
for an application.

A client (the side initiaing communication)
uses any available port greater than 1024.

net.ipv4.ip_local_port_range

To initiate new connections or, for some services, to process additional
incoming connections, the IP stack needs to allocate a local port number
(either UDP or TCP).

The range from which the kernel allocates these ports is controlled by the
net.ipv4.ip_local_port_range parameter which contains two values =

Value #1 > The port number at which to begin allocating ports
Value #2 > The upper limit of the local port range

/sbin/sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 1024 4999
/sbin/sysctl ? w net.ipv4.ip_local_port_range=”32767 61000”
net.ipv4.ip_local_port_range= 32767 61000

This parameter can have a significant effect on services that generate
numerous outbound connections, such as the squid proxy server.

Fragmentation

Ethernet
(1500)

HDLC/T1
(768)

PPP/Frame
(512)

HDLC/OC @ 3
(8192)

Lodabar

Mephiboseth

MTU
(Maximum
Transmission

Unit) The
largest data
segment
permitted
on a circuit. When a packet arrives

that is too large for the
next network circuit the
router cleaves it into
peices called fragments.

Fragment Timeout

The sysctl variable net.ipv4.ipfrag_time determines how long a fragment can
remain in the fragment buffer awaiting the other fragments of its packet.

The default value is 30 seconds which should be more than sufficient unless
you have extemely long A haul, high A latency circuits in your network.

This value is adjustable with the sysctl command B

~ $ /sbin/sysctl B w net.ipv4.ipfrag_time=15
net.ipv4.ipfrag_time = 15

If you don't want to increase the fragment buffer to a greater value, but are
still experiencing reassembly failures, you can try reducing the amount of
time fragments live in the buffer.

Fragment Overflow

The kernel will buffer IP packet fragments for reassembly until the buffer size
reaches net.ipv4.ipfrag_high_thresh. Once that limit has been reached, the
kernel will throw away additional packet fragments until the buffer size has
fallen to net.ipv4.ipfrag_low_thresh. This can behave like bursts of lost
packets.

The defaults are 256k and 192k respectively. On NFS servers, or servers
processing large requests from WAN clients, these levels may be too low.

You can check to see if your system is experiencing problems reassembling
packets by checking the SNMP value ReasmFails:

cat /proc/net/snmp | grep "^Ip:" | cut C f17 C d” “
The values of the fragmentation buffer limits can be adjusted with the sysctl
command:

/sbin/sysctl D w net.ipv4.ipfrag_high_thresh=524288
/sbin/sysctl D w net.ipv4.ipfrag_low_thresh=393216

TCP Close

Poodle

PitBull
FIN

FINACK
FIN

FINACK

Both sides of a TCP connection must close their end of the connection
independently.

When a Linux host sends a FIN to close its end of a connection, it waits net.
ipv4.tcp_fin_timeout seconds for the FINACK before assuming the remote is
dead and closes its end anyway. The number of connections waiting for a
FINACK can be seen in the output of netstat E a, having a status of FIN_WAIT.

The Network
Filesystem

(NFS)

rsize and wsize
The NFS mount options rsize and wsize determine the block size with which
the clients and server will interact.

The default size for both rsize and wsize is 1024, but they can be any multiple
of 512 up to 8192 for NFSv2 or 32768 for NFS v3. Larger operation size
typically results in greater throughput.

By default, NFS uses UDP/IP. UDP/IP does not perform MRU/MTU
discovery. So, the presence of WAN links (with low MRU/MTU values) and
the ability/willingness of the NFS server to reassemble packet fragments can
reduce the effectiveness of increasing the operation size.

UDP/IP is generally faster than TCP/IP and has less overhead. In some cases,
however, TCP/IP may be preferrable. (For instance, you are attached to a large
WAN.) You can request the use of TCP/IP using the tcp option when
mounting the NFS filesystem, but not all NFS servers support NFS over TCP.

nfsd instances

The number of nfsd instances (representing NFS server threads)
determines how many NFS operations the system can process
simultaneously.

The default is 8 instances.

The number of instances started is determined by a parameter to the rpc.
nfsd command usually calle from the system startup scripts.

On Redhat distributions, NFS processes are started by the /etc/rc.d/init.
d/nfs script and the number of instances is set using the RPCNFSDCOUNT
variable defined in the script.

Timeouts

The default timeout for NFS RPC calls is seven F tenths of a second. Calls
that cannot be completed in that time are either re F issued or assumed to fail.
On a slow network, or when using a habitually slow NFS server, it may help
to increase this timeout value.

The NFS mount parameter to set the RPC timeout is timeo={int}, where int
is the timeout in tenths of a second.

The acregmax/acregmin and acdirmax/acdirmin NFS mount parameters
establish the duration that NFS will cache file and directory attributes
respectively. This value is in seconds. The default for acregmax is 3, and
20 for acdirmax.

The nocto parameter prevents NFS from automatically fetching the
attributes on new files, which is the default behavior.

The
Virtual

Machine

vm.freepages

The vm.freepages parameter is used to protect the system from out of memory
conditions. This parameter contains three values.

Value#1 – This number of pages is reserved for use by the kernel. When the free
pages in a system drops to this point, only the kernel can allocate additional
memory.

Value #2 – When the free pages of a system reach this point, the kernel begins to swap
aggresively in an attempt to free pages.

Value #3 – When the free pages of a system drop to this point, the kernel begins to
swap. The kernel will aim to keep, at minimum, this number of pages free.

~ $ sysctl vm.freepages
vm.freepages = 383 766 1149
~ $ sysctl G w vm.free G pages=”512 768 1024”

Raising the amount of memory reserved for the kernel
can help guard against “memory squeeze” conditions.

2.2

bdflush

bdflush is the kernel process whose job is to tell the kernel to write modified
pages from the buffer to disk. bdflush is started during system startup by the
/sbin/update command.

The purpose of bdflush is to make the scheduling of I/O operations more
intelligent, as earlier versions of Linux would simply write all dirty buffer
pages out to disk periodically (more or less).

By increasing the amount of dirty pages allowed in the cache, and the
maximum duration those pages may remain in the cache disk, I/O becomes
more batched. On systems with fast disks and intelligent controllers capable
of re H ordering disk operations, this can improve peformance.

On systems with slow disks that may not be able to unmask interrupts during
disk operations, writing data out to disk in frequent small operations is
preferable.

vm.bdflush

~ $ /sbin/sysctl vm.bdflush
vm.bdflush = 30 64 64 256 600 3000 60 0 0
Value #1 – Maximum number of modified pages in buffer
Value #2 – No meaning
Value #3 – No meaning
Value #4 – No meaning
Value #5 – How meaning jiffies before the buffer is processed
Value #6 – How many jiffies a modified page may remain in the buffer
Value #7 – Maximum percentage of modified pages in the buffer
Value #8 – No meaning
Value #9 – No meaning
A jiffy is a system clock tick. Intel (and Intel like) systems have roughly 100 clock ticks per second.
Alpha systems have 1024 clock ticks per second.

You can change the bdflush parameters with the sysctl command.
~ $ /sbin/sysctl I w vm.bdflush=”60 0 0 0 600 3000 60 0 0”

The value of dummy entries will remain unchanged.

kswapd

~ $ /sbin/sysctl vm.kswapd
vm.kswapd = 768 32 8

Value#1 J Maximum number of pages kswapd tries to free in one round*.
Value#2 – Minimum kswapd tries to free in one round (the do something value).
Value#3 – Maximum number of pages kswapd writes in one round.

*This number is divide by 4 or 8.

Increasing the first value on a system that swaps heavily may improve
performance.

A system with good disk I/O throughput may merit an increase of the third
value.

~ $ /sbin/sysctl K w vm.kswapd=”1024 32 64”
vm.kswapd = 1024 32 64

Page Clusters

The Linux kernel groups swap pages into clusters of 32 pages refered to,
appropriatly enough, as page clusters.

~ $ /sbin/sysctl vm.page L clusters
vm.page L clusters = 4

When a page must be read in from swap, the kernel will always read in
2^vm.page L clusters pages at a time. A value greater than 5 will serve no
purpose as the kernel will be reading into a different cluster probably not
containing any pages it will want.

Reading in multiple pages at once avoids the latency of disk seek
operations, under the assumption that other pages in the same cluster will
be requested soon.

Shared Memory

Shared memory is an IPC mechanism where multiple processes can acquire
access to the same memory pages, and thus, work on the same data set. It is
most commonly used by server applications such as Relation Database
Management Systems (Informix, PostgreSQL, etc...).

The Linux kernel supports shared memory segments of up to 1GB.
The amount of shared memory that can be allocated is controlled by a set of
kernel parameters.

kernel.shmmax M The maximum shared memory segment size
kernel.shmmni M The minimum shared memory segment size
kernel.shmall M The maximum number of shared memory segments

kernel.shmmax and kernel.shmmni are expresses in bytes.
Adjusting the amount of allowed shared memory does not effect system performance, but
may allow you to further scale applications that require shared memory.

Misc....

ISA & Interrupts

The ISA bus on Intel x86 machines has a prioritized interrupt structure dating
back to 1977. All IRQ'shave a priority from 0 (highest) to 15 (lowest), with
zero taken by the system timer.

Devices, like serial ports, by default have a priority between 11 and 13, some of
the lowest in the system. While at the same time, they have the smallest buffer
(16 bytes, and the interupt is not thrown until the buffer is half full).

Thus, a 33.6 modem conversation, resulting in 3700 bytes per second (a byte
every .0002 seconds), can result in over 400 interrupts per second. Any lost
bytes require the entire packet (296 N 1500 bytes) to be retransmitted.

IRQ priorities can be adjusted with the irqtune utility.
http://www.best.com/~cae/irqtune/

PPPD (Dial Up)

Make sure your serial port is set to the maximum speed.

Try Van Jacobsen header compression both on and off (novj). While
VJ saves quite a bit of bandwidth, if your ISP's port servers are over O
taxed, it will cause very high latency.

Expirement with the MTU/MRU, or find out what your ISP
recommends. Common recommendations are 296 and 576. Larger
packets can help with things like FTP and HTTP, while smaller
packets are faster for interactive services such as telnet, ssh, irc, etc...

syslogd and fsync()

The default behaviour of syslogd is to call fsync(). After every write to a log
file, fsync() forces the system to commit the write to disk immediately instead
of maintaining it in the buffer until the most opportune time. This can cause a
constant background “chirping” of disk activity.

You can disable fsync() for a given logfile by prefixing its name with a hypen
in /etc/syslog.conf.

For example:
mail.* /var/log/maillog becomes
mail.* P /var/log/maillog

This can have a significant effect on the performance of busy mail or LDAP
servers especially. It also can extend the battery life of laptop systems.

Warning: Disabling fsync() may result in the loss of some log information in the
event of a system crash.

PostgreSQL: Buffers and fsync()

By default, the PostgreSQL server processes call fsync() after every
transaction, forcing buffered writes to be flushed to disk. By starting
postmaster with the Q F option, the administrator can disable the calls to fsync(),
allowing the kernel to schedule the writes in the most opportune manner.

Warning: Disabling fsync() can result in data loss or a corrupted database in the event
of system crash.

The postmaster's R B option can be used to adjust the number of shared memory
buffers allocated. The default is 64 buffers, each buffer being 8k. The
processes/threads forked by the postmaster to handle client connections use the
shared memory buffers to store pages of tables and indexes in process and
maintain lock tables.

The value of S B must be at least twice the number as S N (maximum number of
clients, default 32).

