
WirelessWireless
AlphabetAlphabet
SoupSoup

EAP

PEAP

WPA(1)

WPA(2)

AES

TSN

RSN

TKIP

WEP

CCMP

WN

AP

AS

EAPOL

RADIUS

SP

802.1x

802.11i

CBC-MAC

PAP

CHAP

Mixing Up A SecureMixing Up A Secure
Wireless NetworkWireless Network

Copyright

 © 2005,2006
 Adam Tauno Williams (awilliam@whitemice.org)
 http://www.whitemiceconsulting.com

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
You may obtain a copy of the GNU Free Documentation License from
the Free Software Foundation by visiting their Web site or by writing to:
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

The Problem

➲ Wireless networks are especially prone to at-
tack and compromise.

● Need a way to authorize users & devices to use
the network.

● Traffic over the wireless connection must be se-
cured.

● Must be simple to use.
● Must be broadly supported.
● Must integrate with existing services.
● Must be robust and reliable.

➲ The answer is WPA
● 802.1x/EAP + RADIUS + TSN/RSN
● aka “802.11i”

What is WPA?

➲ WPA was born out of frustration with the slow
moving 802.11i standard.

● WEP is broken, we need a solution NOW!
● WPA is intended to be 802.11i compatible.

➲ WPA is “Wi-Fi Proctected Access”
● WPA(1), also called TSN, is: TKIP + 802.1X

● TSN is “Transitional Secure Network”
● WPA(2), also called RSN is: CCMP + 802.1x

● RSN is “Robust Secure Network”

What is 802.1x

➲ 802.1x is “port based authentication”
● In this context a “port” is a single attachement

point to a network.
● The port on an Ethernet hub.
● The association between a SP and an AP
● A VPN connection
● etc....

● Think 'gatekeeper'
● The gate is closed until it is opened.
● The gate is either open or closed.

● Port based authentication uses EAP
● EAP was originally designed for authenticating dial-up

users over PPP

What Is EAP

➲ EAP is “Extensible Authentication Protocol”
● The protocol used between client and the net-

work access device (switch, AP, etc...)
● The wire protocol in the case of wireless clients au-

thenticating to an AP is EAPOL
● EAPOL is “EAP Over LAN”

● EAP is NOT an IP Protocol
● EAP is a way of encapsulatingencapsulating authentication

requests.
● An enormous variety of authentication mechanisms

can be encapsulated over EAP.
● PAP, CHAP, M$-CHAP, OTP, Kerberos, Public Key, etc...
● So just “authentication over EAP” means almost nothing.

Encryption Terms

➲ TKIP
● The “Temporary Key Integrity Protocol” is an en-

cryption protocol based on RC4.
● A 'temporary' fix to the WEP train wreck.

● Meant to be compatible with legacy 802.11 hardware.
● Changes keys periodically.
● Uses a 48 bit vector vs. WEPs 24 bit vector.

➲ CCMP
● The “Counter Mode with CBC-MAC” is a new

encryption protocol based on AES.
● AES is “Advanced Encryption Support”
● Demands much more CPU horsepower than RC4.

● To support CCMP hardware needs to be designed to support
CCMP, usually involves a dedicated coprocessor.

What is 802.11i

➲ 802.11i is a standard for constructing ro-
bustly secure networks.

● Requires AES encryption
● Will not work with older [aka most current] hardware.
● Encyrpts the entire frame

● WPA(1) only encrypts the payload
● WPA2 is 802.11i

What Is RADIUS

➲ RADIUS is the “Remote Authentication Dial In
User Service” developed for ISPs to authen-
ticate users.

● RADIUS was designed to provide “AAA”
● Authentication
● Authorization
● Accounting

● RADIUS is an open standard.
● http://www.ietf.org/rfc/rfc2865.txt

● RADIUS usually front-ends another authentication
service.

Terms & Acronyms

➲ Wireless Node [WN]
● The device requesting network access.

● My laptop
➲ Supplicant [SP]

● The software on the client that manages authen-
tication and authorization.

➲ Authenticator
● The software performing the authentication,

● Translating the EAP frames into RADIUS requests.
● Usually this is hosted on the Access Point [AP]

➲ Authentication Server [AS]
● The service or device that is performing the act

accepting or rejecting user credentials.
● Our FreeRADIUS server.

A Visual

Access
Point

Ethernet

Supplicant

Authenticator

Authentication Service
(RADIUS Server)

EAP

RADIUS

WN

AP

AS

TKIP or CCMP

Authenticating

Image from http://distributions.linux.com/howtos/8021X-HOWTO/intro.shtml

➲ Step #1
● WN requests access
● Only EAP traffic is permitted (No IP!)
● This is an exchange of identity.

Authenticating

Image from http://distributions.linux.com/howtos/8021X-HOWTO/intro.shtml

➲ Step #2
● WN authenticates
● The AP acts as a translator and relay
● EAP (EAPOL) <-> RADIUS

● The AP knows NOTHING about the authentication
process or mechanism.

Authentication

Image from http://distributions.linux.com/howtos/8021X-HOWTO/intro.shtml

➲ Step #3
● The port is openned
● The AS responds with success and the

port is opened.
● WN can now proceed with

acquiring an IP address.

FreeRADIUS

➲ FreeRADIUS is a full-featured enterprise
ready RADIUS service provider (AS).

● http://www.freeradius.org
● GPL
● Full support for RFC 2865 and 2866
● Specific support for hardware from more than 50

vendors.
● Supports a myriad of EAP encapsulated authen-

tication methods.
● Provided by main stream distributions.

FreeRADIUS Authorization

➲ FreeRADIUS supports the following authroriza-
tion data sources:

● Files
● Text
● DB / DBM

● LDAP
● OpenLDAP
● Novell NDS
● Sun One
● Any LDAPv3 compliant DSA

● Local Executable
● Perl script
● Python script

➲ SQL Database
● Oracle
● PostgreSQL
● Sybase
● IBM DB2
● MySQL
● ODBC

● iODBC
● uniXODBC

FreeRADIUS Mechanisms

➲ FreeRADIUS can authorize
users using a variety of methods

● PAP (PAM, LDAP, Files)
● CHAP, M$-CHAP, M$-CHAPv2
● NTLM (M$-DC, Samba-DC, LDAP)
● Proxy to another RADIUS server
● CRAM
● SIP Digest
● Nestscape-MTA-MD5
● Kerberos
● X9.9 (CRYTO Card)

➲ Custom mechanisms
can also be developed.

● Perl
● Python

FreeRADIUS EAP

➲ FreeRADIUS supports a variety of EAP
mechanisms.

● EAP-MD5
● Cisco LEAP
● EAP-MSCHAP-V2
● EAP-GTC
● EAP-SIM
● EAP-TLS
● EAP-TTLS
● EAP-PEAP

These mechanisms require OpenSSL.

These mechanisms
are considered weak.

Requires PKI (Ugh!)

Setting Up
A WPA
Network

Setting Up Authenticator

Configure your
AP to use WPA

Tell the AP
where the
RADIUS server
is.

Enter a secret
passphrase.

Select An EAP Mechanism

➲ We are using EAP-PEAP
● PEAP is “Protected EAP”
● Does not require PKI
● User enters a username and a password
● Uses M$-CHAPv2

● Password never crosses the wire.
● Can authenticate against an NT hash of the user's pass-

word.
● Samba DCs have this credential.
● Also will work with an NTLM mechanism.

● Very widely supported
● Natively supported by that other operating system.

● Adding ZERO software to Win32 clients was a design requirement.
● Works well with Open Source supplicants.

Configuring FreeRADIUS

➲ Install FreeRADIUS
● Configuration files are in /etc/raddb

● clients.conf
● Enumerates the authenticators

● eap
● Configures encryption and EAP method.

● radiusd.conf
● Overall server configuration

● users
● Enumerates users or user defaults

● ldap.attrmap
● Maps RADIUS attributes to LDAP attributes

➲ Open UDP Ports 1812/1813

Configuration structure

➲ FreeRADIUS configuration files are nested.
● radiusd.conf includes the other configuration files.

● $INCLUDE ${confdir}/eap.conf
● Nested levels are in the form of:

name {
directive = value
name {

directive = value
name {

...
}

}
}

}

radiusd.conf

➲ radiusd.conf contains a variety of global con-
figuration directives:
● bind_address = 192.168.3.1
● $INCLUDE ${confdir}/clients.conf
● snmp = no
● $INCLUDE ${confdir}/snmp.conf
● max_requests = 1024
● port = 1812
● etc...

Modules & Stacks

➲ The “modules” section defines the 'meat' of
the configuration.

● Within “modules” is:
● mschap
● eap
● ldap
● files
● etc...

● Stacks define the modules that will be run at
each event.

● Each entry is a module defined in “modules”
● Modules defined in each stack is run in order.
● authorization
● authenticate
● etc...

Modules

➲ You only need to configure the modules you
are going to use.

● eap
● Configures the EAP functionality

● mschap
● Configures M$-CHAP options.

● ldap
● Configures LDAP options

Stacks
➲ authorization

● preprocess
mschap
suffix
ldap
eap
files

➲ authenticate
● Auth-Type MS-CHAP {

mschap
}
eap

➲ preacct
➲ accounting
➲

Need to modify these.

Leave this one out at first

mschap

➲ mschap {
authtype = MS-CHAP
use_mppe = yes
require_encryption = yes
require_strong = yes
with_ntdomain_hack = no

}
➲ “use_mppe” has to be “on”.
➲ You can use the “with_ntdomain_hack” if

you need to strip a domain off the provided
user name.

eap

eap {
default_eap_type = peap
timer_expire = 60
ignore_unknown_eap_types = no
cisco_accounting_username_bug = yes
tls {

private_key_password = **********
private_key_file = /etc/ssl/private/littleboy-key-v2.pem
certificate_file = /etc/ssl/certs/littleboy-cert-v2.pem
CA_file = /etc/ssl/certs/MorrisonIndustries-cacert-v2.pem
dh_file = ${raddbdir}/dh

 random_file = /dev/urandom
check_crl = no
}

peap {
default_eap_type = mschapv2
}

mschapv2 {
}

}

Set EAP mechanism

SSL
Setup

EAP
Mechansim

Options

Add Authenticators

➲ The AP is a client of the AS.
● The AP and the AS shared a secret called the

“shared secret”.
● The clients and their secrets are defined in clients.conf
● This secret is used to encrypt and sign packets

between the AP and AS.
● You can also set a nastype which is used to help

interoperability with proprietary clients.

client 127.0.0.1 {
 secret = testing123
 shortname = localhost
 nastype = other
}
client 206.915.906.293 {

secret = bonbon
shortname = yippityskippity
nastype = other

}

Making a client
entry for localhost
(used for testing)

Making a client
entry for AP

Adding Users

➲ By default supplicants are defined in the
users file.

● This is defined in the files {...} module
● An LDAP DSA, RDBMS, DC, or KDC can also be

used for authentication.
● Use users to get our EAP/RADIUS working, then define

you alternative authentication source.
● Add your 'real' authentication source AFTER you get

RADIUS working.
● “ldap”

users file

➲ The users file is read from top to bottom.
● The special DEFAULT user can be used to define at-

tributes for subsequent users.
● The first line of a users entry specifies criteria that must

be matched.
● Subsequent lines define attribute value pairs to be re-

turned to the client.
● There is a large number of attributes that can be

assigned to an account.

users

DEFAULT Auth-Type = Local
 Reply-Message = "Hello, %u",
 Fall-Through = Yes
DEFAULT Service-Type == Framed-User
 Framed-IP-Address = 255.255.255.254,
 Framed-MTU = 576,
 Service-Type = Framed-User,
 Fall-Through = Yes
DEFAULT Framed-Protocol == PPP
 Framed-Protocol = PPP,
 Framed-Compression = Van-Jacobson-TCP-IP
awilliam Password == "eaptest"

Username

Check Items

Reply List

Clear text password.

radtest
➲ The radtest utility is used to test authentication

to your RADIUS server.

radtest awilliam eaptest localhost 10 testing123
Sending Access-Request of id 74 to 127.0.0.1:1812
 User-Name = "awilliam"
 User-Password = "eaptest"
 NAS-IP-Address = localhost.localdomain
 NAS-Port = 10
rad_recv: Access-Accept packet from host 127.0.0.1:1812, id=74, length=37
 Reply-Message = "Hello, awilliam"
$ radtest awilliam badpassword localhost 10 testing123
Sending Access-Request of id 78 to 127.0.0.1:1812
 User-Name = "awilliam"
 User-Password = "badpassword"
 NAS-IP-Address = localhost.localdomain
 NAS-Port = 10
rad_recv: Access-Reject packet from host 127.0.0.1:1812, id=78, length=37
 Reply-Message = "Hello, awilliam"

wpa_supplicant

➲ SuSe 10.0 provides wpa_supplicant.
● wpa_supplicant -d -D madwifi -i ath0 -c {config file}

● ctrl_interface_group=root
network={

ssid="WMMI.NET"
scan_ssid=1
key_mgmt=WPA-EAP
eap=PEAP
pairwise=CCMP TKIP
group=CCMP TKIP
identity="awilliam"
password="********"
phase1="peaplabel=0"
phase2="auth=MSCHAPV2"

}

Your wireless
interface

Your wireless
chipset

WPA drivers

➲ wpa_supplicants supports the following chipsets:
● hostap = Host AP driver (Intersil Prism2/2.5/3) [default]
● hermes = Agere Systems Inc. driver (Hermes-I/Hermes-II)
● madwifi = MADWIFI 802.11 support (Atheros, etc.)
● atmel = ATMEL AT76C5XXx (USB, PCMCIA)
● wext = Linux wireless extensions (generic)
● ndiswrapper = Linux ndiswrapper
● broadcom = Broadcom wl.o driver
● ipw = Intel ipw2100/2200 driver
● wired = wpa_supplicant wired Ethernet driver
● bsd = BSD 802.11 support (Atheros, etc.)
● ndis = Windows NDIS driver

➲ wpa_supplicant home page:
● http://hostap.epitest.fi/wpa_supplicant/

ldap
➲ ldap {

server = "localhost"
identity = "bindDN"
password = bindPassword
basedn = "dc=whitemice,dc=org"
filter =

"(&(objectclass=account)(uid=%{Stripped-User-Name:-%{User-Name}}))"
base_filter = "(objectclass=radiusprofile)"
start_tls = no
default_profile = "cn=Default Profile,ou=RADIUS,ou=Sub...."
dictionary_mapping = ${raddbdir}/ldap.attrmap
ldap_connections_number = 5
edir_account_policy_check=no
groupname_attribute = cn
groupmembership_filter =

"(&(objectClass=GroupOfNames)(member=%{Ldap-UserDn}))"
timeout = 4
timelimit = 3
net_timeout = 1
}

ldap.attrmap
➲ The ldap.attrmap file maps RADIUS attributes

to LDAP attributes
● checkItem LM-Password sambaLMPassword
● checkItem NT-Password sambaNTPassword
● replyItem Idle-Timeout radiusIdleTimeout
● replyItem Session-Timeout radiusSessionTimeout

➲ dn: cn=Default Profile,ou=RADIUS,ou=SubSystems,...
objectClass: top
objectClass: radiusprofile
objectClass: ipService
cn: Default Profile
ipServicePort: 1812
ipServiceProtocol: udp
radiusIdleTimeout: 1800
radiusSessionTimeout: 28800

Seconds

NTLM

➲ An alternative to LDAP is to use NTLM au-
thentication to your CIFS DC

● mschap {
authtype = MS-CHAP
use_mppe = yes
require_encryption = yes
require_strong = yes
with_ntdomain_hack = no
ntlm_auth = "/usr/bin/ntlm_auth --request-nt-key --user-

name=%{Stripped-User-Name:-%{User-Name:-None}} --
domain=BACKBONE --require-membership-
of=BACKBONE\\wireless --
challenge=%{mschap:Challenge:-00} --nt-
response=%{mschap:NT-Response:-00}"
}

All one long line.

Testing NTLM Auth

➲ You can run the ntlm_auth command manu-
ally to make sure that it works

● /usr/bin/ntlm_auth --username=adam \
--domain=BACKBONE
--password=***********
--require-membership-of=BACKBONE\\wireless

● Should return:
NT_STATUS_OK: Success (0x0)

users

➲ Remove users from the users file
● DEFAULT Ldap-Group == "WPA Wireless"

DEFAULT Fall-Through = 1

DEFAULT Auth-Type := Reject
 Reply-Message = "Please call the helpdesk."

● Try authenticating against the RADIUS server now.
➲ Restart the RADIUS service

● rcradius restart

Debugging FreeRADIUS

➲ To debug FreeRADIUS run the server with the “-X -A”
options.

● Server will run in the foreground.
● Will write enormous amounts of information to

standard out.
➲ Server writes logs to /var/log/radius/radius.log
➲ Accounting information is written to

/var/log/radius/radacct/{client-IP}/{session-id}

